

TARGETING CANCER

New Science. New Cancer Therapies. New Hope.

Company Overview – April 2023

FORWARD-LOOKING STATEMENTS

This presentation contains forward-looking statements (including within the meaning of §21E of the U.S. Securities Exchange Act of 1934, as amended, and § 27A of the U.S. Securities Act of 1933, as amended). Forward-looking statements, which generally include statements regarding goals, plans, intentions and expectations, are based upon current beliefs and assumptions of Oncternal Therapeutics, Inc. ("Oncternal") and are not guarantees of future performance. Statements that are not historical facts are forward-looking statements, and include statements regarding the expected timing for achieving key milestones, the timing of regulatory communications and completing and announcing results of clinical trials of Oncternal's product candidates, the anticipated market potential, duration of patent coverage, ability to obtain and maintain favorable regulatory designations, potential accelerated approval pathways for Oncternal's product candidates and preclinical programs, and Oncternal's anticipated cash runway.

All forward-looking statements are subject to risks and uncertainties, including risks and uncertainties inherent in Oncternal's business, including risks associated with the clinical development and process for obtaining regulatory approval of Oncternal's product candidates such as potential delays in the commencement, enrollment and completion of clinical trials; the risk that results seen in a case study of one patient likely will not predict the results seen in other patients in the clinical trial; the risk that interim results of a clinical trial do not predict final results and that one or more of the clinical outcomes may materially change as patient enrollment continues, following more comprehensive reviews of the data, as follow-up on the outcome of any particular patient continues, and as more patient data become available; and other risks described in Oncternal's filings with the U.S. Securities and Exchange Commission ("SEC"). Except as required by applicable law, Oncternal undertakes no obligation to revise or update any forward-looking statement. All forward-looking statements in this presentation are current only as of the date on which the statements were made. Additional factors that could cause actual results to differ materially from those expressed in the forward-looking statements are discussed in Oncternal's filings with the SEC.

ONCT-808, ONCT-534, and zilovertamab are investigational product candidates that have not been approved by the U.S. Food and Drug Administration for any indication.

This presentation includes certain information obtained from trade and statistical services, third-party publications, and other sources. Oncternal has not independently verified such information and there can be no assurance as to its accuracy.

Corporate Highlights

ONCT-808: AUTOLOGOUS CAR T CELL THERAPY TARGETING ROR1

- Initiated Phase 1/2 clinical study in aggressive B-cell NHL, including CD19 CAR T treatment failures
- Clinical manufacturing at the Dana-Farber Cancer Institute for first-in-human studies
- Research collaborations for next-gen CAR NK cell therapies with Karolinska Institutet

ONCT-534: DUAL-ACTION ANDROGEN RECEPTOR INHIBITOR (DAARI)

- Activity in preclinical prostate cancer models of androgen receptor inhibitor resistance, including AR mutations, AR overexpression and AR splice variants, such as AR-V7
- Positive pre-IND meeting with US FDA in December 2022

ZILOVERTAMAB: POTENTIALLY FIRST-IN-CLASS MONOCLONAL ANTIBODY TARGETING ROR1

- Clinical development with ibrutinib paused due to changing therapeutic landscape
- Encouraging 100% PFS for patients with CLL and TP53 aberrations to be further investigated

MULTIPLE CATALYSTS WITHIN CASH RUNWAY PERIOD

- Cash and short-term investments of \$54.3M, expected to support operations into 2025
- ONCT-808 initial clinical data update in aggressive B-cell NHL in late 2023
- ONCT-534 IND filing planned in mid-2023, initial clinical data update in 1H 2024

Experienced Team

James Breitmeyer, MD, PhD CEO, Founder, Director

Salim Yazji, MD СМО Baxter Baxalta NOVARTIS EXELIXIS SCALIMMUNE Johnson & Johnson

Gunnar Kaufmann, PhD CSO

THERAPEUTICS

🚫 Scripps Research

Raj Krishnan, PhD СТО 🚺 GILEAD DYNAVAX AMGEN MERCK

Chase Leavitt

General Counsel

LATHAM

LATHAM®WATKINS

- LINEAGE

Tang Capital

Management

Pablo Urbaneja SVP, Corporate Development

David Hale Co-founder Board Chairman

Director

Roch

élan

Michael Carter, MB Jill DeSimone Director

MERCK

teva

Bristol Myers Squibb

Director

Daniel Kisner, MD Rosemary Mazanet, MD, PhD **Bill LaRue** Director Director

BANK OF AMERICA 🧡

"CancerVax"

Č cabence

SPHBic

SPH 上海医药

Xin Nakanishi, PhD Charles Theuer, MD, PhD Robert Wills, PhD Director Director Director

Modality	Product Candidate	Indication	Preclinical	Phase 1	Phase 2	Phase 3
ROR1 Cell Therapy	ONCT-808 (Autologous CAR T)	Aggressive B-cell NHL	Phase 1/2 initiated			
Dual-Action AR Inhibitor	ONCT-534	Prostate Cancer		IND in mid-2023		
ROR1 mAb	Zilovertamab	Hematological Malignancies and Solid Tumors (ISTs)				

Table of Contents

ONCT-808: ROR1 TARGETED CELL THERAPY

ONCT-534: DUAL-ACTION ANDROGEN RECEPTOR INHIBITOR (DAARI)

ZILOVERTAMAB: MONOCLONAL ANTIBODY TARGETING ROR1

FINANCIAL INFO AND UPCOMING MILESTONES

- Expressed on most B-cell malignancies, including
 - diffuse large B-cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), Mantle cell lymphoma (MCL)
- Expressed on many solid tumors
 - Increased ROR1 expression associated with more aggressive tumors, shorter PFS and OS
- ROR1 activity associated with **aggressive phenotype**
 - Invasion, metastasis, stem cell-like behavior, and resistance to treatment
- Oncternal ROR1 pipeline differentiated and advancing
 - Deep target biology expertise & immunotherapy experience

ROR1 Expressed on Multiple Solid and Liquid Tumors

95%
95%
96%
90%
90%
89%
83%
83%
77%
75%
73%
57%
54%

Michael Wang, MD

Endowed Professor in the Department of Lymphoma & Myeloma at MD Anderson Cancer Center

- Director of the Mantle Cell Lymphoma Program of Excellence and Co-Director of the B-Cell Lymphoma Moon Shot Program at MD Anderson Cancer Center
- Lead PI in Tecartus[®] registrational study
- Over 200 peer-reviewed publications

Marcela Maus, MD, PhD

Associate Professor, Medicine, Harvard Medical School Director of Cellular Immunotherapy, Cancer Center, Massachusetts General Hospital

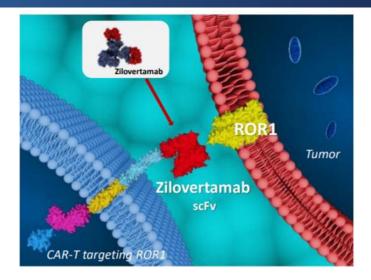
- Translational physician-scientist in cancer immunology
- Lab focuses on the design, generation, and use of innovative forms of immune cell engineering
- Trained in the laboratories of Drs. Katherine High, Michel Sadelain, and Carl June

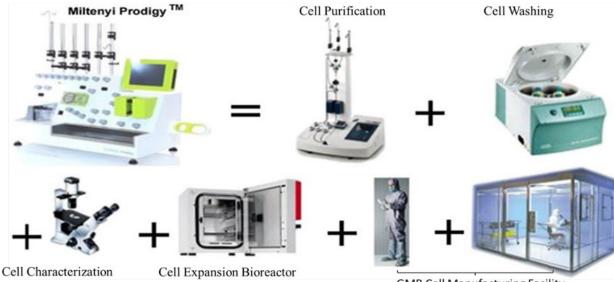
Angela Shen, MD, MBA

Clinical and Translational Market Sector Leader Mass General Brigham; CMO Walking Fish

- Deep clinical, regulatory, and strategic expertise in autologous and allogeneic cell therapies
- Experienced CMO in the cell therapy biotech space
- Led clinical team responsible for designing and launching Kymriah[®] registrational study

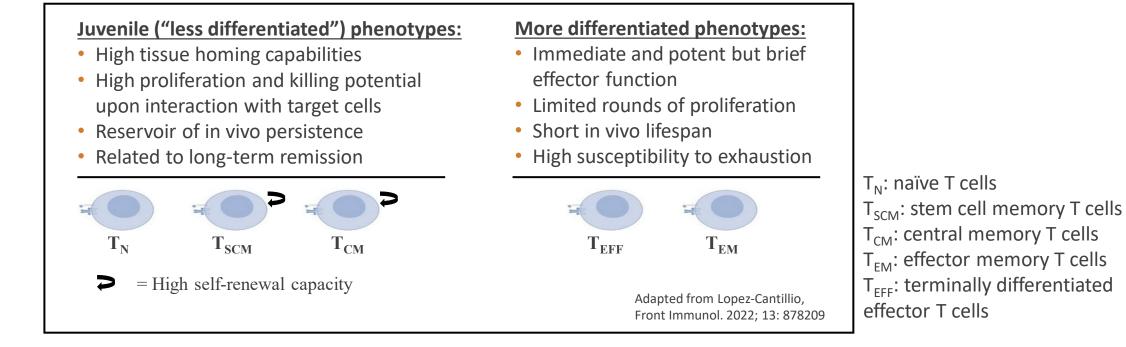
Sadik Kassim, PhD

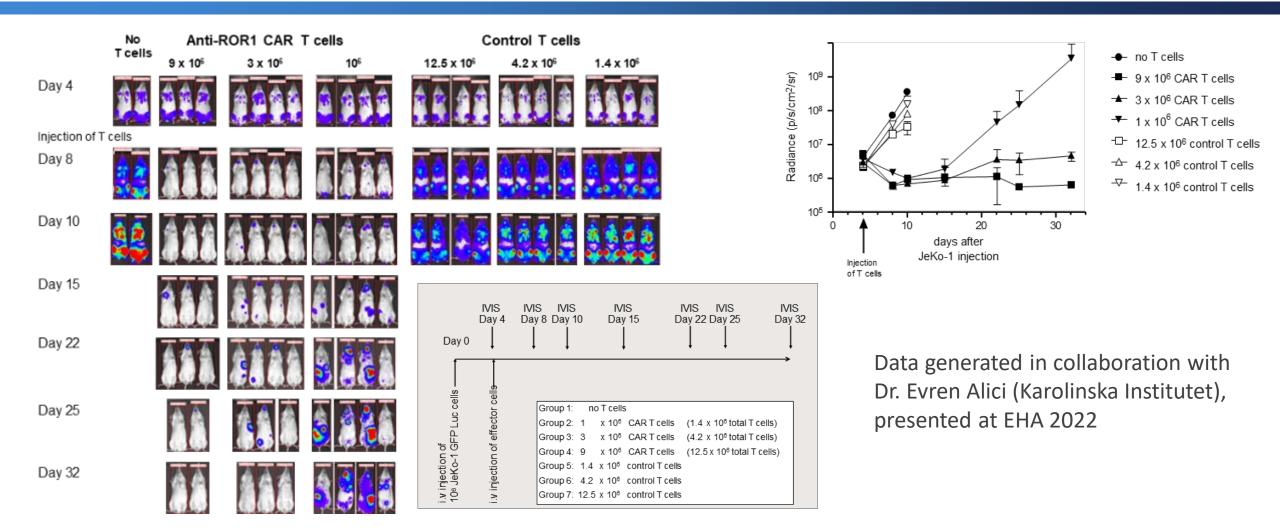

CTO (Genomic Medicines) Danaher Corporation


- Chief Technology Officer at Vor Biopharma
- Chief Scientific Officer at Mustang Bio
- Led the BLA and MAA CMC efforts for Kite's Tecartus[®]
- Former Head of Early Analytical Development for Novartis' Cell and Gene Therapies Unit
- Scientific news editor of Human Gene Therapy journal

ONCT-808 – CMC and Manufacturing

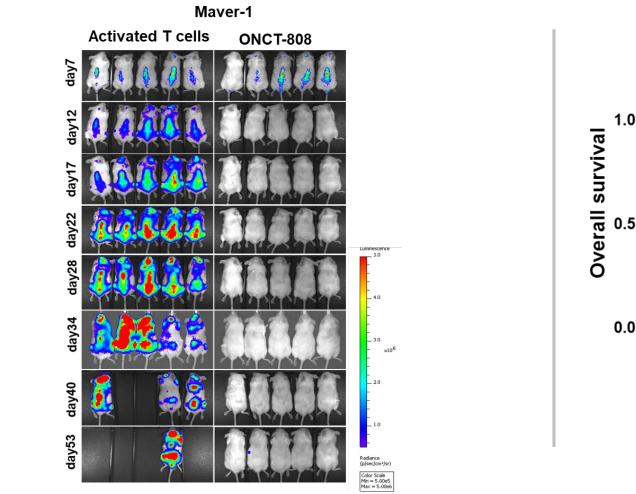
- 1. Lead ROR1 CAR construct optimized and selected with demonstrated high potency against ROR1+ cancer cell lines
- 2. Lentivirus production process confirmed
- **3.** Oncternal ROR1 CAR T cell product process optimized and confirmed
 - Flexible, closed fully-automated platform
 - 8-day production process post-activation
 - Greater than 2 billion CAR+ T cells produced with over 60% CAR+ expression
 - Majority of CAR T cells with juvenile phenotypes (CD4 and CD8 stem cell memory T cells)
- 4. Harvard/Dana Farber CMCF (Cell Manipulation Core Facility) for clinical manufacturing

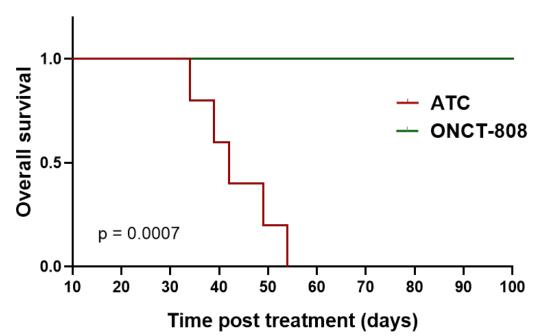



GMP Cell Manufacturing Facility

ONCT-808 Manufacturing Process Generates ROR1 CAR T Cells with High Percentage of "Juvenile Phenotype" T Cells

Donor #1	CD4 ⁺ T cells		CD8 ⁺ T cells		
	$T_N + T_{SCM} + T_{CM}$	T _{EM} + T _{EFF}	$T_N + T_{SCM} + T_{CM}$	$T_{EM} + T_{EFF}$	
ROR1 CAR T Cells	~94%	~6%	~99%	~1%	
Donor #2	CD4 ⁺ T cells		CD8 ⁺ T cells		
ROR1 CAR T Cells	~72%	~28%	~99%	~1%	

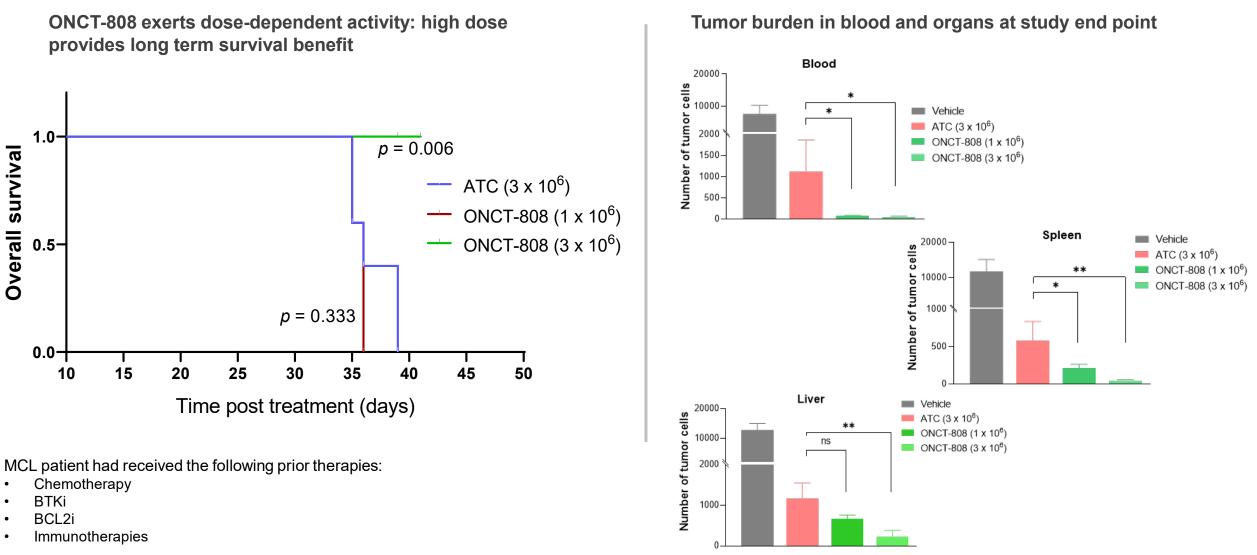

Strong anti-tumor activity of ROR1 CAR T cells demonstrated in MCL xenograft mouse model


ONCTERNAL

therapeutics

ONCT-808 Exhibits Strong Anti-Tumor Activity in ROR1+ Model: Maver-1 MCL

Maver FF-luc (2x10⁶ cells per mouse, 5 mice per treatment arm)


- a. Activated T cells (6x10⁶ cells per mouse)
- b. ONCT-808 CAR T cells (6x10⁶ CAR+ cells per mouse)

Collaboration with Dr. Michael Wang (MDACC)

Making Cancer History®

ONCTERNAL ONCT-808 Demonstrates Anti-Tumor Activity in MCL Patient-derived Model therapeutics™

Collaboration with Dr. Michael Wang (MDACC)

.

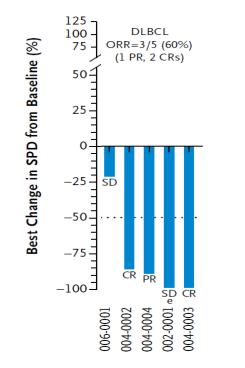
13

	Known CAR T Cell Therapy Challenges	Possible Advantages of Zilo-based ROR1 CAR T
Efficacy	 Increasing number of relapses following CAR T cell therapy, e.g. due to reduced expression, mutations or loss of the target antigen tumor evading CAR T cell efficacy 	 Potential for fewer antigen-negative relapses Increased ROR1 expression associated with aggressive and/or refractory tumor phenotype^{1,2} ROR1 antigen loss might render cancer cells less aggressive and susceptible to chemo³
Safety	 Potential safety issues related to activation by normal cells expressing the target antigen (on-target/off-tumor activity) Target antigens of FDA-approved CAR T cell therapies (CD19 and BCMA) are expressed on subsets of healthy B cells leading to B-cell aplasia and increased risk of infections 	 The antibody-drug conjugate Zilovertamab Vedotin (MK-2140) did not lead to unexpected toxicities in clinical studies^{4,5} ROR1 is not expressed on mature B cells and thus, targeting ROR1 might not lead to B-cell aplasia 1) Kipps 2022 Blood, 2) Meck 2021 Cells, 3) Borcherding 2014 Protein Cell, 4) Wang 2022 NEJM Evid; 5) Wang 2022 Blood

E

S

Supportive Data for ROR1 Targeting in CD19 CAR T Cell Therapy-Relapsed Lymphoma Patients from ROR1 ADC MK-2140 Studies



Preclinical data p = 0.0000150· normalized to control) **ROR1** expression 40 30 20. BIWIresistant Trelapsed

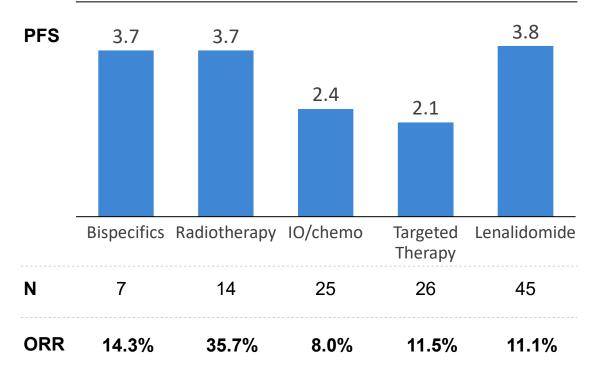
ROR1 expression was highest in brexucabtagene autoleucel (Tecartus[®])relapsed samples (*n* = 3) among analyzed cell samples from MCL patients

Jiang 2021 J Hematol Oncol

Phase 1 Efficacy Data*

Patients with DLBCL responses had 3, 7, and 7 prior regimens (including HDT/HSCT in 1 patient and CAR T cells in 3 patients)

*A Study of Zilovertamab Vedotin (MK-2140) (VLS-101) in Participants With Hematologic Malignancies (MK-2140-001) [NCT03833180]


Phase 1 Safety Data*

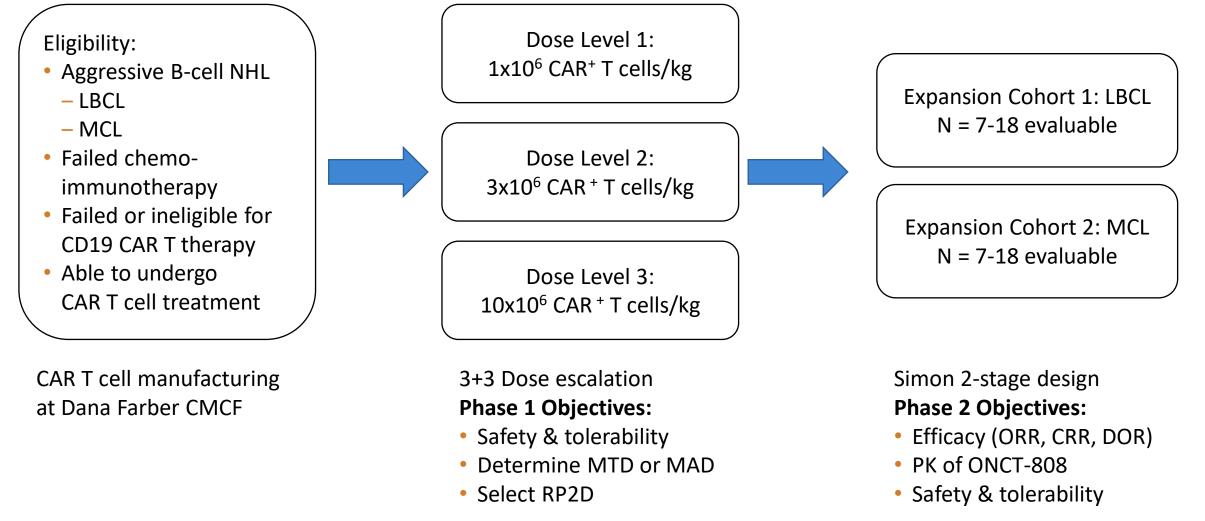
"...as expected with a monomethyl auristatin Econtaining antibody–drug conjugate, adverse events (AEs) included acute neutropenia and cumulative neuropathy..."

<u>"...no clinically-concerning AEs</u> <u>occurred to suggest ROR1-</u> <u>mediated toxicities or</u> <u>nonspecific zilovertamab</u> <u>vedotin binding to normal</u> <u>tissues..."</u> ONCT-808 can address a significant unmet need in CD19 CAR-T relapses in aggressive B-NHL

Median progression-free survival (PFS) after CAR-T relapse in DLBCL, according to treatment type¹ MONTHS

Di Blasi 2022 Blood, Post-CAR relapse in DLBCL

 The prevalence of aggressive NHL in the US is ~30,000 cases, with ~5,000 patients eligible for 3rd line or auto CAR T treatment²


- Response to post-CAR treatment is very low at 14%, with only 7% complete responders, and was disappointing for all systemic therapies administered
- The median progression-free survival was 3 months and median overall survival was 5 months

1 Di Blasi 2022 Blood, Post-CAR relapse in DLBCL

2 Wenzhen 2021 JNCCN, Epidemiology of Diffuse Large B Cell Lymphoma (DLBCL) and Follicular Lymphoma (FL) Patients by Line of Therapy in the United States (US) and Europe (EU) ONCT Corporate Presentation April 2023

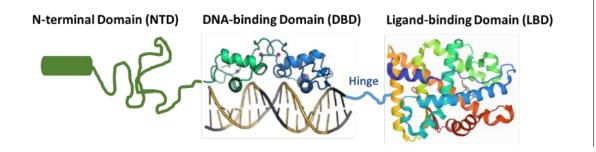
ONCT-808-101 - ROR1 CAR T Phase 1/2 Study Design

LBCL: Large B-Cell Lymphoma (Diffuse LBCL NOS, Primary mediastinal LBCL, High-grade BCL, DLBCL arising from indolent lymphoma or CLL, Follicular lymphoma grade 3B, Richter's syndrome); MCL: Mantle Cell Lymphoma; CMCF: Cell Manipulation Core Facility; MTD: Maximum Tolerated Dose; MAD: Maximum Administered Dose; RP2D: Recommended Phase 2 Dose; ORR: Objective Response Rate; CRR: Complete Response Rate; DOR: Duration of Response

ONCT Corporate Presentation April 2023

ONCT-808: ROR1 TARGETED CELL THERAPY

ONCT-534: DUAL-ACTION ANDROGEN RECEPTOR INHIBITOR (DAARI)


ZILOVERTAMAB: MONOCLONAL ANTIBODY TARGETING ROR1

FINANCIAL INFO AND UPCOMING MILESTONES

Differentiated Mechanism of Action

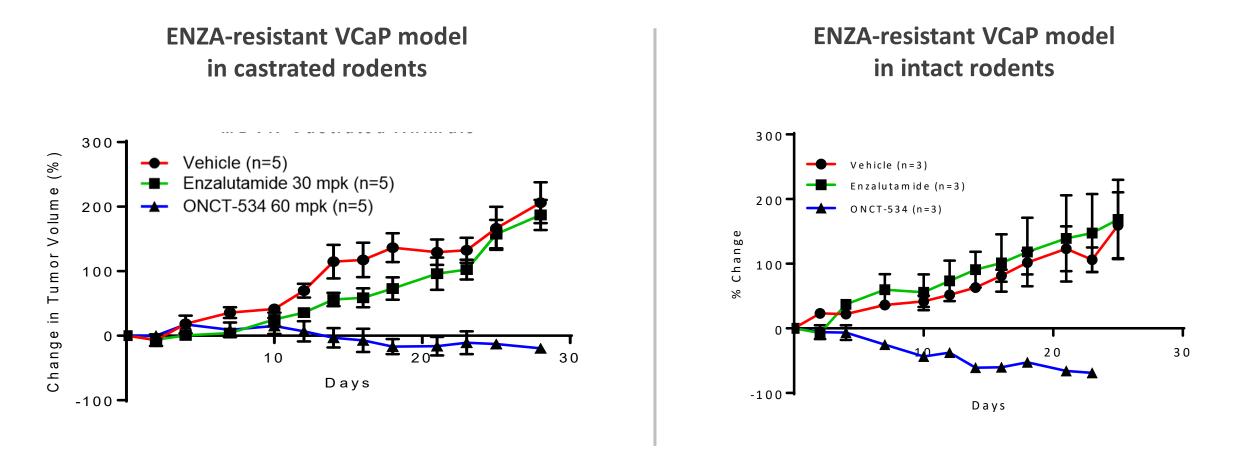
- ONCT-534 binds to N-terminal Domain (NTD) of the androgen receptor (AR) and induces AR protein loss
 - NTD binding important for activity against splice-variants
- Current standard of care treatments, such as enzalutamide or apalutamide, bind to ligandbinding domain (LBD) only

Potential to address unmet needs in prostate cancer

- Potential next-generation treatment option for patients with advanced prostate cancer
 - Focus on addressing emerging unmet medical need related to AR pathway inhibitor-resistant prostate cancer, including splice variant (AR-SV)expressing tumors ⁽¹⁾
- Strong preclinical efficacy in vitro and in vivo
 - Activity in enzalutamide-resistant models, including AR-SV-expressing tumors
- Potential in other AR-driven disease, including luminal AR-triple negative breast cancer (LAR-TNBC) and non-oncology rare disease indication (1) Antonarakis NEJM 2014

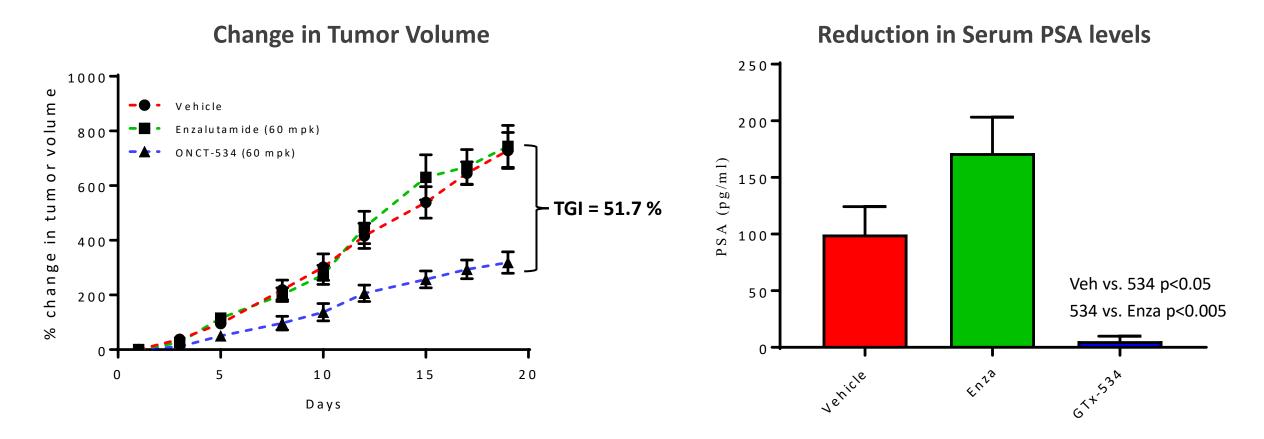
Positive pre-IND meeting in December 2022

ONCT-534 Differentiated vs other AR-targeting Therapeutic Agents

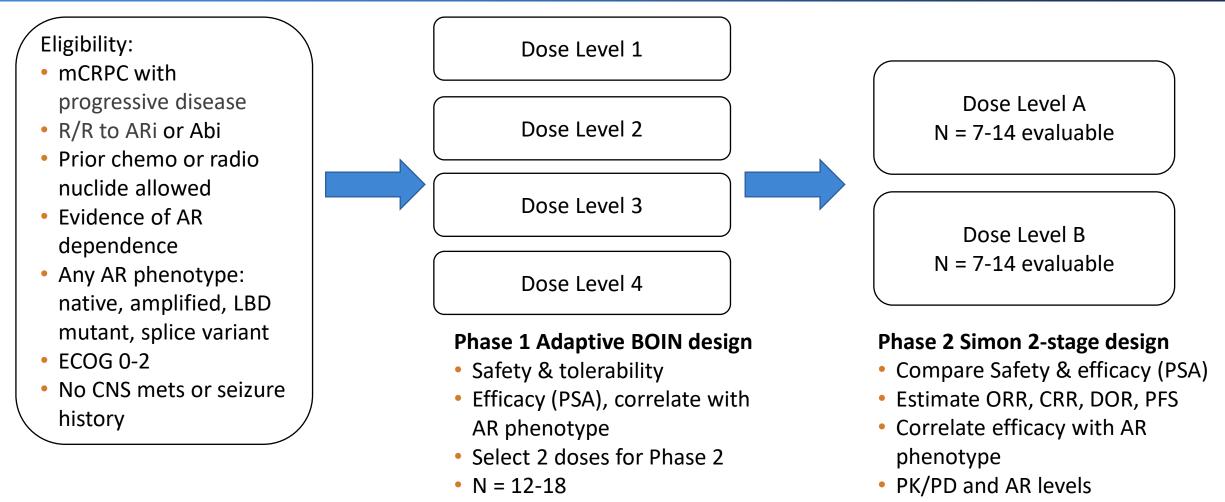


	AR antagonist	PROTAC	ANITEN	DAARI
Examples	Enzalutamide (Pfizer) Apalutamide (J&J) Darolutamide (Bayer)	ARV-110 (Arvinas)	EPI-7386 (ESSA)	ONCT-534
First-in-class Molecule	X	V	V	V
AR Degradation	X	V	X	V
N-terminal domain Binding	X	X	V	V
Active against AR LBD Mutants	certain mutants ^{1,2}	certain mutants ³	Ş	V
Active in ENZA-resistant in vivo models	darolutamide	V	V	V
Active in AR-overexpressing in vivo models	V	V	V	V
Active in AR-SV expressing in vivo models	X	X	?	V
Active in CRCP models using intact rodents	apalutamide ⁴	V	Ş	V

v = Yes, X = No, ? = Unknown


ONCT-534 Demonstrates Strong Anti-Tumor Activity in ENZA-resistant Model

- ONCT-534 demonstrates anti-tumor activity in these models while ENZA treatment does not inhibit tumor growth
 - ONCT-534 treatment leads to regression of the tumor


ONCT-534 Exhibits Strong Anti-tumor Activity in AR-V7-Positive 22Rv1 CRPC ONCTERNAL Model in Castrated Animals

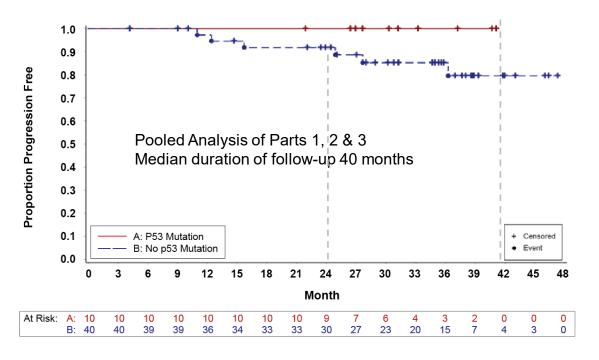
- ONCT-534 demonstrates anti-tumor activity corresponding to inhibition of AR-dependent tumor growth while ENZA treatment does not inhibit tumor growth
 - Maximum growth inhibition for the 22Rv1 model via AR and AR-V7 is about 50% ^{1,2}
- ONCT-534 significantly reduces the serum PSA levels in treated animals

ONCT-534-101 Phase 1/2 Study Design

Select RP2D and patient target

mCRPC: metastatic castrate resistant prostate cancer; ARi: Androgen Receptor inhibitor (enzalutamide, darolutamide, apalutamide); Abi: abiraterone; LBD: AR ligand binding domain; BOIN: Bayesian Optimal Interval; OBD: optimal biologic dose; RP2D: Recommended Phase 2 Dose;

ONCT-808: ROR1 TARGETED CELL THERAPY


ONCT-534: DUAL-ACTION ANDROGEN RECEPTOR INHIBITOR (DAARI)

ZILOVERTAMAB: MONOCLONAL ANTIBODY TARGETING ROR1

FINANCIAL INFO AND UPCOMING MILESTONES

CIRM-0001 Phase 1/2 Study of Zilovertamab + ibrutinib in patients with CLL and aberrant TP53 (ASH 2022 Oral Presentation*)

PFS for p53 mut/del(17p) at **~42 months was 100%** for zilovertamab + ibrutinib (N=5 R/R, N=5 TN)

- Robust response rates and prolonged PFS in TP53altered CLL to be further investigated preclinically, and extended into other tumor types
- Investigator-sponsored study of zilovertamab in combination with docetaxel in patients with metastatic CRPC to continue
- Partnerships and collaborations required to support future clinical trials
- AbbVie is voluntarily withdrawing accelerated FDA approval for ibrutinib in MCL and MZL
- Studies of zilovertamab combined with ibrutinib (CIRM-0001 and ZILO-301) closed due to changed BTKi commercial landscape

ONCT-808: ROR1 TARGETED CELL THERAPY

ONCT-534: DUAL-ACTION ANDROGEN RECEPTOR INHIBITOR (DAARI)

ZILOVERTAMAB: MONOCLONAL ANTIBODY TARGETING ROR1

FINANCIAL INFO AND UPCOMING MILESTONES

Cash & Cash Investments @ March 31, 2023 Cash Runway into 2025	\$54.3M	
Debt	\$0M	
Capitalization:		
Common Shares Outstanding	58.7M	
Awards / Warrants in the Money @ March 31, 2023 ⁽¹⁾	0.9M	
Fully Diluted in the Money	59.6M	
 Non-Dilutive Support NIH Grants MOA, indication expansion 	\$3.7M	

ONCT-808 ROR1 CAR T cell therapy

- Aggressive B-cell NHL Phase 1/2 study initiation
 - Initial clinical data
 - Additional clinical data readouts

ONCT-534 DAARI

- Prostate cancer IND submission
 - Initiate Phase 1/2 study
 - Initial clinical data

1Q 2023 2H 2023 2024

mid 2023 2H 2023 1H 2024

Corporate Highlights

ONCT-808: AUTOLOGOUS CAR T CELL THERAPY TARGETING ROR1

- Initiated Phase 1/2 clinical study in aggressive B-cell NHL, including CD19 CAR T treatment failures
- Clinical manufacturing at the Dana-Farber Cancer Institute for first-in-human studies
- Research collaborations for next-gen CAR NK cell therapies with Karolinska Institutet

ONCT-534: DUAL-ACTION ANDROGEN RECEPTOR INHIBITOR (DAARI)

- Activity in preclinical prostate cancer models of androgen receptor inhibitor resistance, including AR mutations, AR overexpression and AR splice variants, such as AR-V7
- Positive pre-IND meeting with US FDA in December 2022

ZILOVERTAMAB: POTENTIALLY FIRST-IN-CLASS MONOCLONAL ANTIBODY TARGETING ROR1

- Clinical development with ibrutinib paused due to changing therapeutic landscape
- Encouraging 100% PFS for patients with CLL and TP53 aberrations to be further investigated

MULTIPLE CATALYSTS WITHIN CASH RUNWAY PERIOD

- Cash and short-term investments of \$54.3M, expected to support operations into 2025
- ONCT-808 initial clinical data update in aggressive B-cell NHL in late 2023
- ONCT-534 IND filing planned in mid-2023, initial clinical data update in 1H 2024